Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
J Neuropsychiatry Clin Neurosci ; : appineuropsych22010002, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2324932

ABSTRACT

Encephalopathy, a common condition among patients hospitalized with COVID-19, can be a challenge to manage and negatively affect prognosis. While encephalopathy may present clinically as delirium, subsyndromal delirium, or coma and may be a result of systemic causes such as hypoxia, COVID-19 has also been associated with more prolonged encephalopathy due to less common but nevertheless severe complications, such as inflammation of the brain parenchyma (with or without cerebrovascular involvement), demyelination, or seizures, which may be disproportionate to COVID-19 severity and require specific management. Given the large number of patients hospitalized with severe acute respiratory syndrome coronavirus-2 infection, even these relatively unlikely complications are increasingly recognized and are particularly important because they require specific management. Therefore, the aim of this review is to provide pragmatic guidance on the management of COVID-19 encephalopathy through consensus agreement of the Global COVID-19 Neuro Research Coalition. A systematic literature search of MEDLINE, medRxiv, and bioRxiv was conducted between January 1, 2020, and June 21, 2021, with additional review of references cited within the identified bibliographies. A modified Delphi approach was then undertaken to develop recommendations, along with a parallel approach to score the strength of both the recommendations and the supporting evidence. This review presents analysis of contemporaneous evidence for the definition, epidemiology, and pathophysiology of COVID-19 encephalopathy and practical guidance for clinical assessment, investigation, and both acute and long-term management.

2.
EClinicalMedicine ; 51: 101551, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2210177
3.
Neuroimage Clin ; 36: 103253, 2022 Nov 07.
Article in English | MEDLINE | ID: covidwho-2105659

ABSTRACT

Human coronavirus disease 2019 (COVID-19) due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has multiple neurological consequences, but its long-term effect on brain health is still uncertain. The cerebrovascular consequences of COVID-19 may also affect brain health. We studied the chronic effect of COVID-19 on cerebrovascular health, in relation to acute severity, adverse clinical outcomes and in contrast to control group data. Here we assess cerebrovascular health in 45 patients six months after hospitalisation for acute COVID-19 using the resting state fluctuation amplitudes (RSFA) from functional magnetic resonance imaging, in relation to disease severity and in contrast with 42 controls. Acute COVID-19 severity was indexed by COVID-19 WHO Progression Scale, inflammatory and coagulatory biomarkers. Chronic widespread changes in frontoparietal RSFA were related to the severity of the acute COVID-19 episode. This relationship was not explained by chronic cardiorespiratory dysfunction, age, or sex. The level of cerebrovascular dysfunction was associated with cognitive, mental, and physical health at follow-up. The principal findings were consistent across univariate and multivariate approaches. The results indicate chronic cerebrovascular impairment following severe acute COVID-19, with the potential for long-term consequences on cognitive function and mental wellbeing.

4.
Cell Rep Med ; 3(10): 100750, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2076844

ABSTRACT

As COVID-19 cases exceed hundreds of millions globally, many survivors face cognitive challenges and prolonged symptoms. However, important questions about the cognitive effects of COVID-19 remain unresolved. In this cross-sectional online study, 478 adult volunteers who self-reported a positive test for COVID-19 (mean = 30 days since most recent test) perform significantly worse than pre-pandemic norms on cognitive measures of processing speed, reasoning, verbal, and overall performance, but not short-term memory, suggesting domain-specific deficits. Cognitive differences are even observed in participants who did not require hospitalization. Factor analysis of health- and COVID-related questionnaires reveals two clusters of symptoms-one that varies mostly with physical symptoms and illness severity, and one with mental health. Cognitive performance is positively correlated with the global measure encompassing physical symptoms, but not the one that broadly describes mental health, suggesting that the subjective experience of "long COVID" relates to physical symptoms and cognitive deficits, especially executive dysfunction.


Subject(s)
COVID-19 , Mental Health , Adult , Humans , Neuropsychological Tests , COVID-19/epidemiology , Cross-Sectional Studies , Cognition
5.
PLoS One ; 17(9): e0273704, 2022.
Article in English | MEDLINE | ID: covidwho-2054330

ABSTRACT

INTRODUCTION: Magnetic resonance imaging (MRI) of the brain could be a key diagnostic and research tool for understanding the neuropsychiatric complications of COVID-19. For maximum impact, multi-modal MRI protocols will be needed to measure the effects of SARS-CoV-2 infection on the brain by diverse potentially pathogenic mechanisms, and with high reliability across multiple sites and scanner manufacturers. Here we describe the development of such a protocol, based upon the UK Biobank, and its validation with a travelling heads study. A multi-modal brain MRI protocol comprising sequences for T1-weighted MRI, T2-FLAIR, diffusion MRI (dMRI), resting-state functional MRI (fMRI), susceptibility-weighted imaging (swMRI), and arterial spin labelling (ASL), was defined in close approximation to prior UK Biobank (UKB) and C-MORE protocols for Siemens 3T systems. We iteratively defined a comparable set of sequences for General Electric (GE) 3T systems. To assess multi-site feasibility and between-site variability of this protocol, N = 8 healthy participants were each scanned at 4 UK sites: 3 using Siemens PRISMA scanners (Cambridge, Liverpool, Oxford) and 1 using a GE scanner (King's College London). Over 2,000 Imaging Derived Phenotypes (IDPs), measuring both data quality and regional image properties of interest, were automatically estimated by customised UKB image processing pipelines (S2 File). Components of variance and intra-class correlations (ICCs) were estimated for each IDP by linear mixed effects models and benchmarked by comparison to repeated measurements of the same IDPs from UKB participants. Intra-class correlations for many IDPs indicated good-to-excellent between-site reliability. Considering only data from the Siemens sites, between-site reliability generally matched the high levels of test-retest reliability of the same IDPs estimated in repeated, within-site, within-subject scans from UK Biobank. Inclusion of the GE site resulted in good-to-excellent reliability for many IDPs, although there were significant between-site differences in mean and scaling, and reduced ICCs, for some classes of IDP, especially T1 contrast and some dMRI-derived measures. We also identified high reliability of quantitative susceptibility mapping (QSM) IDPs derived from swMRI images, multi-network ICA-based IDPs from resting-state fMRI, and olfactory bulb structure IDPs from T1, T2-FLAIR and dMRI data. CONCLUSION: These results give confidence that large, multi-site MRI datasets can be collected reliably at different sites across the diverse range of MRI modalities and IDPs that could be mechanistically informative in COVID brain research. We discuss limitations of the study and strategies for further harmonisation of data collected from sites using scanners supplied by different manufacturers. These acquisition and analysis protocols are now in use for MRI assessments of post-COVID patients (N = 700) as part of the ongoing COVID-CNS study.


Subject(s)
COVID-19 , Inosine Diphosphate , Biological Specimen Banks , Brain/diagnostic imaging , COVID-19/diagnostic imaging , Humans , Magnetic Resonance Imaging , Phenotype , Reproducibility of Results , SARS-CoV-2 , United Kingdom
6.
Brain Commun ; 4(5): fcac188, 2022.
Article in English | MEDLINE | ID: covidwho-2017748

ABSTRACT

The epidemiology of coma is unknown because case ascertainment with traditional methods is difficult. Here, we used crowdsourcing methodology to estimate the incidence and prevalence of coma in the UK and the USA. We recruited UK and US laypeople (aged ≥18 years) who were nationally representative (i.e. matched for age, gender and ethnicity according to census data) of the UK and the USA, respectively, utilizing a crowdsourcing platform. We provided a description of coma and asked survey participants if they-'right now' or 'within the last year'-had a family member in coma. These participants (UK n = 994, USA n = 977) provided data on 30 387 family members (UK n = 14 124, USA n = 16 263). We found more coma cases in the USA (n = 47) than in the UK (n = 20; P = 0.009). We identified one coma case in the UK (0.007%, 95% confidence interval 0.00-0.04%) on the day of the survey and 19 new coma cases (0.13%, 95% confidence interval 0.08-0.21%) within the preceding year, resulting in an annual incidence of 135/100 000 (95% confidence interval 81-210) and a point prevalence of 7 cases per 100 000 population (95% confidence interval 0.18-39.44) in the UK. We identified five cases in the USA (0.031%, 95% confidence interval 0.01-0.07%) on the day of the survey and 42 new cases (0.26%, 95% confidence interval 0.19-0.35%) within the preceding year, resulting in an annual incidence of 258/100 000 (95% confidence interval 186-349) and a point prevalence of 31 cases per 100 000 population (95% confidence interval 9.98-71.73) in the USA. The five most common causes were stroke, medically induced coma, COVID-19, traumatic brain injury and cardiac arrest. To summarize, for the first time, we report incidence and prevalence estimates for coma across diagnosis types and settings in the UK and the USA using crowdsourcing methods. Coma may be more prevalent in the USA than in the UK, which requires further investigation. These data are urgently needed to expand the public health perspective on coma and disorders of consciousness.

7.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article in English | MEDLINE | ID: covidwho-2017743

ABSTRACT

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Subject(s)
Brain Injuries , COVID-19 , Influenza, Human , Humans , Neurofilament Proteins , COVID-19/complications , Biomarkers , Autoantibodies , Immunity
8.
EClinicalMedicine ; 47: 101417, 2022 May.
Article in English | MEDLINE | ID: covidwho-1944815

ABSTRACT

Background: Preliminary evidence has highlighted a possible association between severe COVID-19 and persistent cognitive deficits. Further research is required to confirm this association, determine whether cognitive deficits relate to clinical features from the acute phase or to mental health status at the point of assessment, and quantify rate of recovery. Methods: 46 individuals who received critical care for COVID-19 at Addenbrooke's hospital between 10th March 2020 and 31st July 2020 (16 mechanically ventilated) underwent detailed computerised cognitive assessment alongside scales measuring anxiety, depression and post-traumatic stress disorder under supervised conditions at a mean follow up of 6.0 (± 2.1) months following acute illness. Patient and matched control (N = 460) performances were transformed into standard deviation from expected scores, accounting for age and demographic factors using N = 66,008 normative datasets. Global accuracy and response time composites were calculated (G_SScore & G_RT). Linear modelling predicted composite score deficits from acute severity, mental-health status at assessment, and time from hospital admission. The pattern of deficits across tasks was qualitatively compared with normal age-related decline, and early-stage dementia. Findings: COVID-19 survivors were less accurate (G_SScore=-0.53SDs) and slower (G_RT=+0.89SDs) in their responses than expected compared to their matched controls. Acute illness, but not chronic mental health, significantly predicted cognitive deviation from expected scores (G_SScore (p=​​0.0037) and G_RT (p = 0.0366)). The most prominent task associations with COVID-19 were for higher cognition and processing speed, which was qualitatively distinct from the profiles of normal ageing and dementia and similar in magnitude to the effects of ageing between 50 and 70 years of age. A trend towards reduced deficits with time from illness (r∼=0.15) did not reach statistical significance. Interpretation: Cognitive deficits after severe COVID-19 relate most strongly to acute illness severity, persist long into the chronic phase, and recover slowly if at all, with a characteristic profile highlighting higher cognitive functions and processing speed. Funding: This work was funded by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre (BRC), NIHR Cambridge Clinical Research Facility (BRC-1215-20014), the Addenbrooke's Charities Trust and NIHR COVID-19 BioResource RG9402. AH is funded by the UK Dementia Research Institute Care Research and Technology Centre and Imperial College London Biomedical Research Centre. ETB and DKM are supported by NIHR Senior Investigator awards. JBR is supported by the Wellcome Trust (220258) and Medical Research Council (SUAG/051 G101400). VFJN is funded by an Academy of Medical Sciences/ The Health Foundation Clinician Scientist Fellowship. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.

9.
Nat Med ; 28(6): 1141-1148, 2022 06.
Article in English | MEDLINE | ID: covidwho-1900513

ABSTRACT

Research and practice in critical care medicine have long been defined by syndromes, which, despite being clinically recognizable entities, are, in fact, loose amalgams of heterogeneous states that may respond differently to therapy. Mounting translational evidence-supported by research on respiratory failure due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-suggests that the current syndrome-based framework of critical illness should be reconsidered. Here we discuss recent findings from basic science and clinical research in critical care and explore how these might inform a new conceptual model of critical illness. De-emphasizing syndromes, we focus on the underlying biological changes that underpin critical illness states and that may be amenable to treatment. We hypothesize that such an approach will accelerate critical care research, leading to a richer understanding of the pathobiology of critical illness and of the key determinants of patient outcomes. This, in turn, will support the design of more effective clinical trials and inform a more precise and more effective practice at the bedside.


Subject(s)
COVID-19 , SARS-CoV-2 , Critical Care , Critical Illness , Humans , Syndrome
10.
PLoS Genet ; 18(3): e1010042, 2022 03.
Article in English | MEDLINE | ID: covidwho-1793655

ABSTRACT

In November 2021, the COVID-19 pandemic death toll surpassed five million individuals. We applied Mendelian randomization including >3,000 blood proteins as exposures to identify potential biomarkers that may indicate risk for hospitalization or need for respiratory support or death due to COVID-19, respectively. After multiple testing correction, using genetic instruments and under the assumptions of Mendelian Randomization, our results were consistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and ABO being causally associated with an increased risk of hospitalization or respiratory support/death due to COVID-19 (ORs = 1.12-1.35). Higher levels of FAAH2 were solely associated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/death (ORs = 0.80-0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely associated with a decreased risk of hospitalization (ORs = 0.86-0.93), whilst higher levels of ICAM-1 were solely associated with a decreased risk of respiratory support/death of COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in both hospitalization and need for respiratory support/death. They, additionally, suggest that higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our research replicates findings of blood markers previously associated with COVID-19 and prioritises additional blood markers for risk prediction of severe forms of COVID-19. Furthermore, we pinpoint druggable targets potentially implicated in disease pathology.


Subject(s)
Blood Proteins/metabolism , COVID-19/blood , COVID-19/pathology , Biomarkers/analysis , Biomarkers/blood , Blood Proteins/analysis , Blood Proteins/genetics , COVID-19/diagnosis , COVID-19/mortality , Causality , Genome-Wide Association Study , Hospitalization , Humans , Mendelian Randomization Analysis , Mortality , Pandemics , Polymorphism, Single Nucleotide , Prognosis , Proteome/analysis , Proteome/genetics , Proteome/metabolism , Respiratory Insufficiency/blood , Respiratory Insufficiency/diagnosis , Respiratory Insufficiency/mortality , Respiratory Insufficiency/pathology , Risk Factors , SARS-CoV-2/physiology , Severity of Illness Index
11.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-1695175

ABSTRACT

Clotting Factor V (FV) is primarily synthesised in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes and T regulatory cells as sources of increased FV in hospitalised patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system. Graphical

12.
iScience ; 25(3): 103971, 2022 Mar 18.
Article in English | MEDLINE | ID: covidwho-1699877

ABSTRACT

Clotting Factor V (FV) is primarily synthesized in the liver and when cleaved by thrombin forms pro-coagulant Factor Va (FVa). Using whole blood RNAseq and scRNAseq of peripheral blood mononuclear cells, we find that FV mRNA is expressed in leukocytes, and identify neutrophils, monocytes, and T regulatory cells as sources of increased FV in hospitalized patients with COVID-19. Proteomic analysis confirms increased FV in circulating neutrophils in severe COVID-19, and immunofluorescence microscopy identifies FV in lung-infiltrating leukocytes in COVID-19 lung disease. Increased leukocyte FV expression in severe disease correlates with T-cell lymphopenia. Both plasma-derived and a cleavage resistant recombinant FV, but not thrombin cleaved FVa, suppress T-cell proliferation in vitro. Anticoagulants that reduce FV conversion to FVa, including heparin, may have the unintended consequence of suppressing the adaptive immune system.

13.
J Infect Dis ; 224(4): 595-605, 2021 08 16.
Article in English | MEDLINE | ID: covidwho-1367024

ABSTRACT

BACKGROUND: Convalescent plasma containing neutralizing antibody to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is under investigation for coronavirus disease 2019 (COVID-19) treatment. We report diverse virological characteristics of UK intensive care patients enrolled in the Immunoglobulin Domain of the REMAP-CAP randomized controlled trial that potentially influence treatment outcomes. METHODS: SARS-CoV-2 RNA in nasopharyngeal swabs collected pretreatment was quantified by PCR. Antibody status was determined by spike-protein ELISA. B.1.1.7 was differentiated from other SARS-CoV-2 strains using allele-specific probes or restriction site polymorphism (SfcI) targeting D1118H. RESULTS: Of 1274 subjects, 90% were PCR positive with viral loads 118-1.7 × 1011IU/mL. Median viral loads were 40-fold higher in those IgG seronegative (n = 354; 28%) compared to seropositives (n = 939; 72%). Frequencies of B.1.1.7 increased from <1% in November 2020 to 82% of subjects in January 2021. Seronegative individuals with wild-type SARS-CoV-2 had significantly higher viral loads than seropositives (medians 5.8 × 106 and 2.0 × 105 IU/mL, respectively; P = 2 × 10-15). CONCLUSIONS: High viral loads in seropositive B.1.1.7-infected subjects and resistance to seroconversion indicate less effective clearance by innate and adaptive immune responses. SARS-CoV-2 strain, viral loads, and antibody status define subgroups for analysis of treatment efficacy.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/therapy , SARS-CoV-2/immunology , Viral Load/immunology , Aged , Antibodies, Neutralizing/immunology , COVID-19/virology , Critical Illness , Female , Humans , Immunization, Passive , Immunoglobulin G/immunology , Male , Middle Aged , RNA, Viral/immunology , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , COVID-19 Serotherapy
14.
Brain Commun ; 3(3): fcab168, 2021.
Article in English | MEDLINE | ID: covidwho-1364745

ABSTRACT

SARS-CoV-2 is associated with new-onset neurological and psychiatric conditions. Detailed clinical data, including factors associated with recovery, are lacking, hampering prediction modelling and targeted therapeutic interventions. In a UK-wide cross-sectional surveillance study of adult hospitalized patients during the first COVID-19 wave, with multi-professional input from general and sub-specialty neurologists, psychiatrists, stroke physicians, and intensivists, we captured detailed data on demographics, risk factors, pre-COVID-19 Rockwood frailty score, comorbidities, neurological presentation and outcome. A priori clinical case definitions were used, with cross-specialty independent adjudication for discrepant cases. Multivariable logistic regression was performed using demographic and clinical variables, to determine the factors associated with outcome. A total of 267 cases were included. Cerebrovascular events were most frequently reported (131, 49%), followed by other central disorders (95, 36%) including delirium (28, 11%), central inflammatory (25, 9%), psychiatric (25, 9%), and other encephalopathies (17, 7%), including a severe encephalopathy (n = 13) not meeting delirium criteria; and peripheral nerve disorders (41, 15%). Those with the severe encephalopathy, in comparison to delirium, were younger, had higher rates of admission to intensive care and a longer duration of ventilation. Compared to normative data during the equivalent time period prior to the pandemic, cases of stroke in association with COVID-19 were younger and had a greater number of conventional, modifiable cerebrovascular risk factors. Twenty-seven per cent of strokes occurred in patients <60 years. Relative to those >60 years old, the younger stroke patients presented with delayed onset from respiratory symptoms, higher rates of multi-vessel occlusion (31%) and systemic thrombotic events. Clinical outcomes varied between disease groups, with cerebrovascular disease conferring the worst prognosis, but this effect was less marked than the pre-morbid factors of older age and a higher pre-COVID-19 frailty score, and a high admission white cell count, which were independently associated with a poor outcome. In summary, this study describes the spectrum of neurological and psychiatric conditions associated with COVID-19. In addition, we identify a severe COVID-19 encephalopathy atypical for delirium, and a phenotype of COVID-19 associated stroke in younger adults with a tendency for multiple infarcts and systemic thromboses. These clinical data will be useful to inform mechanistic studies and stratification of patients in clinical trials.

16.
J Neurol ; 268(8): 2629-2655, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1318755

ABSTRACT

Neurological manifestations in pandemics frequently cause short and long-term consequences which are frequently overlooked. Despite advances in the treatment of infectious diseases, nervous system involvement remains a challenge, with limited treatments often available. The under-recognition of neurological manifestations may lead to an increase in the burden of acute disease as well as secondary complications with long-term consequences. Nervous system infection or dysfunction during pandemics is common and its enduring consequences, especially among vulnerable populations, are frequently forgotten. An improved understanding the possible mechanisms of neurological damage during epidemics, and increased recognition of the possible manifestations is fundamental to bring insights when dealing with future outbreaks. To reverse this gap in knowledge, we reviewed all the pandemics, large and important epidemics of human history in which neurological manifestations are evident, and described the possible physiological processes that leads to the adverse sequelae caused or triggered by those pathogens.


Subject(s)
COVID-19 , Nervous System Diseases , Humans , Nervous System Diseases/epidemiology , Nervous System Diseases/etiology , Pandemics , SARS-CoV-2
20.
Lancet Psychiatry ; 7(10): 875-882, 2020 10.
Article in English | MEDLINE | ID: covidwho-613881

ABSTRACT

BACKGROUND: Concerns regarding potential neurological complications of COVID-19 are being increasingly reported, primarily in small series. Larger studies have been limited by both geography and specialty. Comprehensive characterisation of clinical syndromes is crucial to allow rational selection and evaluation of potential therapies. The aim of this study was to investigate the breadth of complications of COVID-19 across the UK that affected the brain. METHODS: During the exponential phase of the pandemic, we developed an online network of secure rapid-response case report notification portals across the spectrum of major UK neuroscience bodies, comprising the Association of British Neurologists (ABN), the British Association of Stroke Physicians (BASP), and the Royal College of Psychiatrists (RCPsych), and representing neurology, stroke, psychiatry, and intensive care. Broad clinical syndromes associated with COVID-19 were classified as a cerebrovascular event (defined as an acute ischaemic, haemorrhagic, or thrombotic vascular event involving the brain parenchyma or subarachnoid space), altered mental status (defined as an acute alteration in personality, behaviour, cognition, or consciousness), peripheral neurology (defined as involving nerve roots, peripheral nerves, neuromuscular junction, or muscle), or other (with free text boxes for those not meeting these syndromic presentations). Physicians were encouraged to report cases prospectively and we permitted recent cases to be notified retrospectively when assigned a confirmed date of admission or initial clinical assessment, allowing identification of cases that occurred before notification portals were available. Data collected were compared with the geographical, demographic, and temporal presentation of overall cases of COVID-19 as reported by UK Government public health bodies. FINDINGS: The ABN portal was launched on April 2, 2020, the BASP portal on April 3, 2020, and the RCPsych portal on April 21, 2020. Data lock for this report was on April 26, 2020. During this period, the platforms received notification of 153 unique cases that met the clinical case definitions by clinicians in the UK, with an exponential growth in reported cases that was similar to overall COVID-19 data from UK Government public health bodies. Median patient age was 71 years (range 23-94; IQR 58-79). Complete clinical datasets were available for 125 (82%) of 153 patients. 77 (62%) of 125 patients presented with a cerebrovascular event, of whom 57 (74%) had an ischaemic stroke, nine (12%) an intracerebral haemorrhage, and one (1%) CNS vasculitis. 39 (31%) of 125 patients presented with altered mental status, comprising nine (23%) patients with unspecified encephalopathy and seven (18%) patients with encephalitis. The remaining 23 (59%) patients with altered mental status fulfilled the clinical case definitions for psychiatric diagnoses as classified by the notifying psychiatrist or neuropsychiatrist, and 21 (92%) of these were new diagnoses. Ten (43%) of 23 patients with neuropsychiatric disorders had new-onset psychosis, six (26%) had a neurocognitive (dementia-like) syndrome, and four (17%) had an affective disorder. 18 (49%) of 37 patients with altered mental status were younger than 60 years and 19 (51%) were older than 60 years, whereas 13 (18%) of 74 patients with cerebrovascular events were younger than 60 years versus 61 (82%) patients older than 60 years. INTERPRETATION: To our knowledge, this is the first nationwide, cross-specialty surveillance study of acute neurological and psychiatric complications of COVID-19. Altered mental status was the second most common presentation, comprising encephalopathy or encephalitis and primary psychiatric diagnoses, often occurring in younger patients. This study provides valuable and timely data that are urgently needed by clinicians, researchers, and funders to inform immediate steps in COVID-19 neuroscience research and health policy. FUNDING: None.


Subject(s)
Cerebrovascular Disorders/etiology , Coronavirus Infections/complications , Mental Disorders/etiology , Pneumonia, Viral/complications , Adult , Age Factors , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Female , Humans , Male , Middle Aged , Pandemics , Retrospective Studies , SARS-CoV-2 , Sex Factors , United Kingdom , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL